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Abstract—Intensity inhomogeneity is a challenging problem
in the field of image processing. Many variational models have
been developed for this purpose up to now such as Chen Vese, Li-
Kim (LK)and Wu-He (WH) models. In this paper we proposed
a newly segmentation model which will be capable for images
with intensity inhomogeneity. Furthermore the performance of
the proposed model compare to exiting models as shown in the
experimental section.
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I. INTRODUCTION

Image segmentation is one of the most important and
complicated task in the field of image processing and computer
vision. There are different techniques developed for this task
such as histogram analysis and thresholding [?], [?], [?],
region growing [?], [?], edge detection and active contours
[?], [?], [?]. Active contour models are widely used in image
segmentation due to their robustness and reliability. These
models are formulated as energy minimization problems and
can be categorized broadly into edge-based models [?], [?],
[?], [?], and region-based models [?], [?], [?], [?].

Various models for image segmentation have been exten-
sively studied and successfully implemented in image analysis,
pattern recognition, image understanding, computer vision,
etc. There are two different segmentation classes: 1) global
segmentation, where the contour of all the objects in a given
image is required to be segmented, and 2) interactive selective
segmentation where the task of segmentation is to segment a
particular object feature of the given image.

Edge based models employ image gradient information
and edge detector functions to attract the dynamic contours
toward the boundaries of objects, and the region based ones
make use of image intensities (certain homogeneity) to guide
the motion of active contours. Compared with the edge-based
models, region-based models do not rely on any edge and
gradient information and are less sensitive to the noise and
clutter. Moreover, the region-based models are usually less
dependent on the initialization since they exploit the global
region information of the image statistics. Therefore, in this
paper, we mainly focus on the region-based models. One of
the most popular region-based models is Chan-Vese (C-V)

model [?], which, as a special case of Mumford-Shah energy
functional[?], is defined by minimizing an energy functional
to approximate the image in piecewise constant forms. The
energy functional of the model can be written as:

FCV (Γ, c1, c2) = µ · (length(Γ)) + ν · area(inside(Γ)) +

λ1

∫
inside(Γ)

|I0 − d1|2dxdy + λ2

∫
outside(Γ)

|I0 − d2|2dxdy, (1)

In terms of level set formulation, the equation (??) becomes:

FCV (φ, d1, d2) = µ

∫
Ω

|∇H(φ)|dxdy + ν

∫
Ω

H(φ)dxdy +

λ1

∫
Ω

|I0 − d1|2H(φ)dxdy + λ2

∫
Ω

|I0 − d2|2(1−H(φ))dxdy, (2)

Minimizer c1 and c2 are define as follow:

c1 =

∫
Ω
I2
0 (Hc(φ)∫

Ω
I0)Hc(φ)

, c2 =

∫
Ω
I2
0 (1−Hc(φ(x)))∫

Ω
I0(1−Hc(φ))

. (3)

Minimization of the functional (??) with respect φ leads
to the following PDE:


∂φ

∂t
= δε(φ)

[
µ∇ ·

( ∇φ
|∇φ|

)
− ν − λ1(I0 − d1)2 + λ2(I0 − d2)2

]
, in Ω,

φ(t, x, y) = φ0(x, y), in Ω,
∂φ

∂n
= 0, on ∂Ω.

(4)

CV model may not segment images having intensity inho-
mogeneity, however it is only design for homogeneous images.
The rest of the paper is organized as follows. Section ??,
reviews some classical models and indicates their limitations.
Section ?? describes the variational formulation of our model.
Section ??, presents the experimental results. Section ??
concludes our work with a discussion and future directions.

II. BACKGROUND

Segmentation of intensity inhomogeneity images is a chal-
lenging problem in the field of image processing. Many varia-
tional models[?], [?], [?], [?], [?], [?] developed to overcome
this problem. But we shall only review two models below that
are directly related to this work.
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A. The LBF Model

Li et al. [?] proposed a local binary fit (LBF) which deals
with intensity inhomogeneity of the images. The model utilizes
a kernel function to enhance the CV model [?]. The fitting
energy term of the model is given as follows:

FLBFε (φ, f1, f2) = µ

∫
Ω

∂(φ)|∇H|dx (5)

+ν

∫
Omega

(|∇φ| − 1)2dx + λ1

∫ [ ∫
Kσ(x− y)|I0(y)

−f1(x)|2H(φ(y))dy
]
dx + λ2

∫ [ ∫
Kσ(x− y)|I0(y)

−f2(x)|2(1−H(φ(y)))dy
]
dx

where Kσ is the gaussian kernel having standard deviation
σ, u0 is given image, f1 and f2, are the smooth functions
which fits the given image locally inside and outside of the
contour C respectively. The minimization of functional (??)
leads to the following equations:

f1(x) =
Kσ(x)[I0(x)Hε(φ(x))]

Kσ(x)Hε(φ(x))
(6)

f2(x) =
Kσ(x)[I0(x)(1−Hε(φ(x)))]

Kσ(x)(1−Hε(φ(x)))
,

and

∂φ

∂t
= −δε(φ)

(
λ1e1(x)− λ2e2(x)

)
+ νδε(φ)div

( ∇φ
|∇φ|

)
(7)

+µ
(
∇2φ− div

( ∇φ
|∇φ|

))
,

where

e1(x) =

∫
Ω

Kσ(y − x)|I0(x)− f1(y)|2, e2(x) (8)

=

∫
Ω

Kσ(y − x)|I0(x)− f2(y)|2dy.

The LBF model works well as compared to the CV model in
those images having intensity inhomogeneity. However, it may
not work properly in multi-region segmentation.

B. Wu-He (WH) model

To improve the CV model for images with intensity inho-
mogeneity, Wu and He [?] proposed a coefficient of variation
based model (CVM) with a strictly convex energy functional
in a level set formulation of the form:

FWH(φ, c1, c2) = λ

∫
Ω

(I0 − c1)2

c21
(φ+ 1)2dx,

+

∫
Ω

(I0 − c2)2

c22
(φ− 1)2dx, (9)

where λ > 0. Minimizer c1 and c2 are define as follow:

c1 =

∫
Ω
I2
0 (Hc(φ)∫

Ω
I0)Hc(φ)

, c2 =

∫
Ω
I2
0 (1−Hc(φ(x)))∫

Ω
I0(1−Hc(φ))

. (10)

Minimization of the functional (??) with respect φ leads to the
following PDE:

φt = −λ (I0 − c1)2

c21
(φ+ 1)− (I0)− c2)2

c22
(φ− 1)

(11)

The segmentation results of WH model are better than the
CV model, however, it is not designed for images with sever
intensity inhomogeneity.

III. THE PROPOSED MODEL

Now we will design a method which is capable to minimize
the intensity inhomogeneity and after that we will proposed
our model which can tackle images having intensity inhomo-
geneity. In our proposed model the given image I0 describe as
follows:

I0(x, y) = ζ(x, y)I(x, y) + F (x, y),

where I(x, y) is the homogenous image while ζ(x, y) is
intensity inhomogeneity and F (x, y) is the additive noise. We
can approximate noise with the Gaussian distribution if the
signal to noise ratio of I0(x, y) is not too much low. In order to
simplify this computation, the noise is ignored and logarithmic
transform of the intensity is used as follows:

log I0(x, y) = log ζ(x, y) + log I(x, y). (12)

In order to analyze the image in small regions, first we
construct a multi-scale average filter. The single filtered image
vD1 is defined as:

I01 =
I0 ∗K
1 ∗K

(13)

Now the dual filtered image I02
is defined as follows:

I02
=

I01
∗K

1 ∗K
(14)

Now replace ζ(x, y) in (??) by I02 , we get the transformation:

log Î(x, y) = log I0(x, y)− log I02
(x, y) + logCn,(15)

where Î(x, y) is the approximation of I(x, y) which is
inhomogeneity-free image, Cn is the normalized constant
which preserves the mean intensity of Î(x, y). We write
equation (??) for simplicity as:

Î(x, y) =
CnI0(x, y)

I02(x, y)
(16)

We propose the following functional of minimization:

FWH(φ, c1, c2) = λ

∫
Ω

(Î(x, y)− c1)2

c21
(φ+ 1)2dx (17)

+

∫
Ω

(Î(x, y)− c2)2

c22
(φ− 1)2dx,
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by minimization with respect to c1 and c2 we get the
following results:

c1 =

∫
Ω
Î(x, y)2(Hc(φ)dx∫

Ω
Î(x, y))Hc(φ)dx

, (18)

c2 =

∫
Ω
Î(x, y)2(1−Hc(φ(x)))dx∫
Ω
Î(x, y)(1−Hc(φ))dx

.

Minimization of the functional (??) with respect φ leads
to the following PDE:

φt = −λ (Î(x, y)− c1)2

c21
(φ+ 1)− (Î(x, y))− c2)2

c22
(φ− 1)

(19)

The segmentation results of the proposed model are better
than the Wu-He model on those images having sever intensity
inhomogeneity.

IV. EXPERIMENTAL RESULTS

In this section we will show some experimental results of
the proposed model and the WH model on the images having
intensity.

In Fig.?? shows the performance of the proposed model
on image having background intensity inhomogeneity, the first
row show that performance of proposed model, while second
row show the result of proposed model. The parameter used
for our proposed model as λ = 2, Image Size 200× 200 and
Iteration= 100.

Similarly, In Fig. ?? and In Fig. ?? segmentation perfor-
mance of the proposed model on images with intensity inho-
mogeneity, the first row show that performance of proposed
model, while second row show the result of proposed model.
The parameter used for our proposed model as λ = 2, Image
Size 200× 200 and Iteration= 100.

V. CONCLUSION

In this paper, Convex Segmentation Model for Images with
Intensity Inhomogeneity. In Convex Segmentation Model, we
set dual filter technique to handle intensity inhomogeneity.
The experimental results of the proposed Convex Segmentation
Model compared with Wu He model on synthetic images show
efficient and robust performance. In future, we plan to extend
the proposed algorithm to selective segmentation and video
segmentation.
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